The IC-8™ small aperture intraocular lens (IOL) is a revolutionary lens that extends depth of focus by combining small aperture technology with a monofocal lens. Clinical studies demonstrate that the IC-8 IOL produces unparalleled visual outcomes that deliver:

- A continuous and uninterrupted range of vision
- Excellent image quality across the entire range of vision
- Good quality night vision with less symptoms like glare or halos
- A new standard in outcomes:
 - Good near and intermediate vision without compromising far vision
 - A highly forgiving lens when target refractive endpoints are missed
 - Compensates to the effects of astigmatism up to 1.5 diopters of astigmatism

Over the next few pages you will discover how this first of a kind small aperture IOL is revolutionizing the premium cataract clinic. You will see clinical and bench testing data that proves the IC-8 IOL is the lens that can help your patients achieve higher image quality and greater visual freedom. We invite you to learn more.
Delivering a Continuous and Uninterrupted Range of Vision
Applying the same small-aperture principle optics as the KAMRA™ inlay, the IC-8 IOL incorporates a non-diffractive 3.23 mm diameter opaque mask with a 1.36 mm central aperture embedded within a 6.0 mm one-piece hydrophobic acrylic lens. The mask creates a pinhole effect, which delivers nearly 3.0 diopters of extended depth of focus by blocking unfocused peripheral light rays and isolating more focused central and paracentral rays through the central aperture.

The strength of the IC-8 IOL lies in its ability to extend depth of focus. As a result, the lens provides excellent image quality at all distances, and less trouble with glare and halos than lenses with two or three focal points.

Before the IC-8 IOL: The natural lens is unable to focus light.

After the IC-8 IOL Implantation: The mask of the IC-8 IOL is able to focus light to provide a continuous range of vision.

Well-established optical principles have shown that placing the IC-8 IOL in the non-dominant eye creates the same positive effect as bilateral implantation of two premium lenses.
Providing Excellent Image Quality Near to Far

As shown in the Air Force Target images on the opposite page, the IC-8™ IOL delivers excellent image resolution across a broader range of vision compared to other premium lenses.

Method for Measuring Optical Performance

The standardized method of measuring IOL optical performance is with a technique called “through-focus”. With this method, different IOL designs are optically bench tested under the exact same conditions. For through-focus testing, optical image data is measured from +1.00 diopter to -2.50 diopters in 0.50 diopter increments to establish depth of focus. The best focus position is at 0.00 diopters or the plano position. A standardized Air Force image target is used to obtain test results. The image data presented on the next page clearly demonstrate the IC-8 IOL delivers excellent image resolution across a broader continuous through-focus range of vision compared to other premium lenses. The testing conditions used for the optical test comparison test are described as follows:

- ISO Model Eye, ISO 11979-2, In Aqueous, Halogen White Light (440 – 755 nm) with a 3.0 mm aperture
- MTF data measured at 50 lp/mm
- Through-focus image data measured at 0.50 diopter increment steps
- Optical Metrology system use was highly accurate

Effective Focal Length (EFL) method

97% of patients would choose the IC-8 small aperture lens again.
IC-8™ IOL: Provides a full range of vision without resulting in a loss of far vision when the target refraction is achieved.¹

Monofocal IOL: Air Force Targets demonstrate excellent image quality at best focus position (plano) but greatly reduced depth of focus, which results in poor image quality at intermediate and near distance.

Diffractive Multifocal IOL: Air Force Targets demonstrate both a decrease in image contrast and ghosting. Ghosting is created by an in-focus image superimposed on top of an out-of-focus image.

Trifocal IOL: Air Force Targets demonstrate both a decrease in image contrast and ghosting. Ghosting is created by an in-focus image superimposed on top of an out-of-focus image.

Summary: The IC-8 IOL delivers excellent image resolution across a broader through-focus range of vision with better image contrast and without ghosting symptoms as compared to other premium lenses.
Raising the Standard in Outcomes

Achieving Excellent Outcomes
In a post-market clinical study conducted by AcuFocus, the average binocular visual acuities were 1.14 decimal (20/16-) at far, 0.91 decimal (20/20-) at intermediate and 0.71 decimal (20/25-) at near. By achieving the refractive targets of -0.75 D in the IC-8™ eye and plano in the monofocal eye, visual outcomes can be further optimized.

Forgiving Presbyopia-Correcting Lens
As the graph below demonstrates, the IC-8 IOL provides an excellent outcome even if the refractive target is missed. This is the result of the lens being able to deliver an extended range of vision.

It is important to note that depth of focus is determined by looking at the amount of defocus (distance) at which the patient can still achieve a visual acuity of 0.6 decimal (20/32).

*IC-8 eyes corrected to -0.75 D.
Accepting Up to 1.5 Diopters of Astigmatism
Even with 1.50 D of astigmatism, the visual acuity did not decline by even one line of BCVA when compared to a monofocal IOL, which lost 1.5 lines.

Targeting The Right Patients
Consider implanting the IC-8 small aperture IOL when you have a patient with:

- Prior refractive procedure
- Great demands for excellent quality of vision across the entire range of vision
- Higher order aberrations (i.e. post refractive patients) and/or ocular trauma
- Previous cataract procedure (first eye treated with a monofocal) and now desire to have second eye treated with a premium solution
- Corneal astigmatism of ≤1.50 D
- Desire for good contrast and optimal image quality
- Sensitivity to glare, halos and starburst
IC-8™ Small Aperture IOL Specifications

- **IOL Material**
 - Single-piece hydrophobic acrylic

- **Optic Design**
 - One-piece UV blocking hydrophobic acrylic
 - Biconvex, anterior aspheric surface
 - 6.00 mm optic diameter
 - 12.50 mm overall length
 - 360° posterior square edge
 - Modified C haptic with 5° angulation

- **Mask Design**
 - Polyvinylidene difluoride (PVDF) and nano-particles of carbon
 - 1.36 mm aperture
 - 3.23 mm total diameter
 - 3200 microperforations
 - 5 microns thick

- **A-Constant for Optical Biometry**: 120.5
- **A-Constant for Ultrasound Biometry**: 120.15
- **Optical Surgeon Factor**: 2.64
- **Diopter Range**: +15.5 D to +27.5 D (0.50 D steps)
- **Single-Use Injector System**

AcuFocus recommends that surgeons personalize their A-constant based on their surgical techniques, equipment, experience with the lens model and postoperative results.

IC-8 Procedure Overview

<table>
<thead>
<tr>
<th>Dominant Eye</th>
<th>Non-Dominant Eye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral Procedure</td>
<td>IC-8 IOL</td>
</tr>
<tr>
<td>Target Refraction</td>
<td>-0.75 D</td>
</tr>
<tr>
<td>Incision Size</td>
<td>3.5 mm</td>
</tr>
</tbody>
</table>

©2016 AcuFocus, Inc. All rights reserved. AcuFocus, IC-8, the IC-8 logo, and KAMRA are trademarks or registered trademarks of AcuFocus, Inc. Patent information: www.acufocus.com/int/patent

References:
3. Reference: 029 Study, Data on File at AcuFocus